G
T
II!I

Deep SLAM Study

July 11, 2018
Dong-Won Shin

DNC architecture I

« Differentiable attention mechanisms

d Memory usage

a Controller b Read and write heads € Memory and temporal links

s "
Output T
[(N | || L]

o | SO | | - —
T - e

Write key

Read key ')

Read key

Read mode = = N
B[] F
.
Read vectors ‘ 0 o U .
Input ! .

meas e

w

Controller Network

 Basically, the controller network is deep LSTM architecture.

Input gate iy=o(Wilx,;: hi_;;h ']+ b))
Forget gate f; = (Wl hiyshi '] + by)
State (long-term memory) st =f,s;_1+ ijtanh(Wilx,; bi_ s by~ '] + b))
Output gate o = o(W.[x,;:hl_ ;K1 +b))
Hidden (short-term memory) p! = ¢! tanh(s))

Read vector r}_l, ooy rf_l from read heads at the previous time step

Interface vector & = Welhy;...;h;]
Output vector ¥, =v;+ Wilr);...;r] ,where v, = W,lh;;...;h]

3 http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Interface Vector

 Interface parameters

Al

>) A’ AW A A al aR
gt:kzl;.-.;k:R;,B ﬂ k58, 585 ve3f s f 18738 Ty R,

e Rreadkeys{kF'c RW;1<i<R}j

e Rread strengths {ﬂ:’i = oneplus(ﬁi’i) €[1,00);1<i<R}
o the write key k' € RY;

o the write strength 3" = oneplus(ﬁAZN) € [1,00);
« the erase vector e; = 0(&;) € [0,1]";

o the write vector v, € RY;

e Rfree gates{fi :a(fi)e [0,1; 1 <i<R}

« theallocation gate g% = 0(§?) € [0,1};

o the write gate g = 0(g}") € [0,1]; and

e Rread modes {m} = softmax(#) € S3;1 < i <R}.
t t

Reading and Writing to Memory

» Read operation

ri=M/wp
memory read weight

» Write operation

M;=M;_, o(E — wr’e;r) + w;"v;r

erasing

writing

From the interface vector
o the erase vector e; = o(&;) € [0,1];

o the write vector v, € R%;

Memory Addressing I

 To determine where to write
« Combination of content-based addressing and dynamic memory allocation

 To determine where to read
« Combination of content-based addressing and temporal memory linkage

 Content-based addressing

C(M, k, B)[i] = exp{Dk, MU, 1)6) ‘where D(u,v) = i

/ \Zj exp{D(k, M|}, - |) 3} |ul|v|

Lookup key Key strength

From the interface vector
o Rread keys {ki’i eRY;1<i<R}

R read strengths {ﬁ;’i = oneplus(B;’i) € [1,00); 1<i<R}

o the write key k}' € RY;

the write strength 3" = oneplus(:v) € [1,00);

Memory Addressing I

« Dynamic memory allocation
« To allow the controller to free and allocate memory as needed
Retention vector: how much each location will not be freed by the free gates

Y, = ﬁ (1 —f’tw;il)
i=1

Usage vector: which locations have been used so far

= (Ur—1+ Wi — 10w)0,

Allocation weighting: to provide new locations for writing

a:[p,[jl] = (1 — u[,[j]]) H ur[,[i]]

Content weighting: from content-based adclressmg
Ct = C(Mt— 1> k:v: ’Bt)

From the interface vector
Write weighting + Rfree gates {f}, = o(f :) €[0,1;1<i<R}
— & [gta, +(1-g, Jer] « theallocation gate g = 0(¢7) € [0,1]

« thewrite gate g = 0(¢") € [0,1]; and

Memory Addressing I

« Temporal memory linkage
« To keep track of consecutively modified memory locations

» Precedence weighting
« p¢[i] : the degree to which location j was the last one written to

P0=0

p,= [1 — > w/'i]

Pt_1+W¥V

 Link matrix
» L:[i,j] : the degree to which location / was the location written to after location j

Loli,j]=0 Vi,j
L i,i]=0 Vi
Li(i,j1 = (1 — w;'[i] — w}"[j)Ls—1[d, j] + wi'[d]p,_, [j]

« Forward and backward weighting

i I,i
ft — Ltwt—l

i r .. .ni
b;=L, w;,

Memory Addressing I

« Temporal memory linkage
« Content weighting: from content-based addressing

c;' = C(My k7', B7)
» Read weighting
wi' = mi[1]b; + mi[2]e}’ + wi[3]f)

From the interface vector
e Rread modes {1r§ = softmax(ﬁ'i) €83;1<i<R}

R read keys {k}' € R¥; 1 <i< R}

R read strengths [ﬁ;’i = oneplus(B:’i) € [1,00);1<i<R}

the write key k}' € RY;

the write strength 3, = oneplus(ﬁA:v) € [1,00);

Thank you

